Macroeconomic Instability, Capital Accumulation and Growth: The Case of Turkey 1963-1999*

Mustafa İsmihan
Department of Economics
Middle East Technical University
Ankara 06531 Turkey
ismihan@metu.edu.tr

Kıvılcım Metin-Özcan
Bilkent University
Department of Economics
Ankara 06531 Turkey
kivilcim@bilkent.edu.tr

Aysıl Tansel
Department of Economics
Middle East Technical University
Ankara 06531 Turkey
atansel@metu.edu.tr
This paper is based on Mustafa Ismihan’s Ph.D. thesis (Ismihan, 2002) being prepared under the co-supervision of Aysit Tansel and Kivilcim Metin-Ozcan at Department of Economics, METU. First author would like to thank Merih Celasun and Nazim Ekinci for helpful comments and discussions on his Ph.D. thesis. Substantial revisions of this paper was performed during Mustafa Ismihan’s stay in the University of York as a Visiting Scholar, he thanks Turkish Academy of Sciences (TUBA), Gulcin Ozkan and the Department of Economics and Related Studies of the University of York. Our special thanks go to Gulcin Ozkan whose comments and discussions have greatly improved this paper. We are also grateful to Karim Abadir and Fatma M. Utku-Ismihan for helpful comments. The first draft of this paper was presented in the ERC / METU International Conference in Economics V, in September, 2001. We would also like to thank conference participants and, especially to Yakup Kepenek, for helpful comments. The usual disclaimers apply.
Abstract

This study investigates the empirical relationships between macroeconomic instability, capital accumulation and growth in Turkey over the period 1963-1999. We use recent time series econometric techniques, such as cointegration and impulse response analysis, to analyze empirical relationships between the variables of interest. The results of this paper suggest that the chronic and increasing macroeconomic instability of the Turkish economy has seriously affected her capital formation and hence her growth. Furthermore, chronic macroeconomic instability seems to become a serious impediment to the public investment, especially, its infrastructure component, and shattered or, even reversed the complementarity between public and private investment in the long-run. Therefore, Turkish experience has shown that macroeconomic instability not only deteriorates economic growth but it could also reverse the complementarity between public and private investment in the long-run.

Key Words: Public Investment, Private Investment, Complementarity, Macroeconomic Instability

JEL Classification: E62, E63, C52
1. INTRODUCTION

During 1980s and early 1990s, many developing countries followed unstable macroeconomic policies, and they tend to exhibit excessive budget deficits, high and chronic inflation rate, low and volatile economic growth rates over an extended period of time. Similarly, during the same period there has been a remarkable decline in public capital spending (as a share of output) in many developing and developed countries. Many economists nowadays believe that macroeconomic instability is detrimental to capital accumulation and economic growth, and there are significant empirical evidence that support this view (e.g. Kormendi and Meguire, 1985; Fischer, 1993a, 1993b; Biault, 1995; and Bleaney, 1996). Other empirical studies found positive effects of public capital spending, particularly infrastructure spending, on private investment, productivity and growth (see, for example, Sturm et al. 1998; Pereira, 2000; and Mittnik and Neumann, 2001). These studies suggest that a decrease in public capital spending could be harmful for economic growth. Furthermore, recently new political economy literature has emphasized the role of political factors on macroeconomic instability and the decline in public capital spending relative to current spending, particularly in the case of fiscal stringency. It is argued that political instability and polarization (e.g. politically weak, populist and myopic governments), and strategic behavior of policy makers or the interactions among them (e.g. strategic use of debt policy, delayed stabilizations), may have harmful effects on macroeconomic stability, public investment and economic growth for long period of time (See, Persson and Tabellini, 2000 and Drazen, 2000 for an overview).

Currently there are two related strands of research on the role of public capital spending in capital accumulation and economic growth. The first one focuses on the public (capital) spending and private investment nexus. In this research area, many studies found significant

1 Some developed countries also ran large budget deficits during this period.
2 We define macroeconomic instability in line with Fischer (1993a,1993b) and Bleaney (1996); therefore, when we talk about a rise in macroeconomic instability we mean a rise in one or more policy-induced macroeconomic instability indicators, such as inflation rate, deficit to GNP ratio and external debt to GNP ratio.
3 Furthermore, World Bank (1993) argued that stable and sensible macroeconomic policies had promoted economic growth in the East Asian Countries. Similarly, recent empirical study by Sanchez-Robles (1998) concluded that macroeconomic stability should be regarded as a prerequisite for economic growth in the Spanish economy. Moreover, Cardosa (1993) found some evidence of negative effect of economic instability on private investment in Latin America.
4 Developing countries may also experience macroeconomic instability as a result of (mis)-management of overall economy (e.g. by pursuing wrong policy mix), structural characteristics such as income and
complementarity (crowding-in) effect, but some studies found inconclusive or contradictory results (see, for example, Blejer and Khan, 1984; Taylor, 1991; Argimon et al., 1997; Cardosa, 1993; and Aschauer, 1989b). Blejer and Khan (1984) among others suggest that this ambiguity might be the result of using aggregate rather than disaggregate public investment, e.g. infrastructure public investment. Similarly evidence for the Turkish economy is also ambiguous (see, for example, Anand et al., 1990; Celasun and Tansel, 1993; Conway, 1990; Metin-Ozcan et al, 2001; and Uygur, 1995). Second approach analyzes the public capital spending and output (or growth) nexus. In this approach, the role of public capital spending, especially, public infrastructure investment, has been theoretically considered both in a production function framework (e.g. Aschauer, 1989a) and in a new growth theory framework (e.g. Barro, 1990). Most of the empirical studies conducted in this area, either using a single-equation time series (e.g. Aschauer, 1989a) or a cross-section analysis (e.g., Easterly and Rebelo, 1993) has indicated a positive effect of public investment on growth.

Early studies on these two literatures were criticized both on empirical and theoretical grounds. For example, on theoretical grounds, production function approach is criticized for being inappropriate for analyzing the long run effects of public capital spending (see, Mittnik and Neumann, 2001 and the references therein). The main empirical criticisms are related to the reverse-causation, simultaneity, and “spuriousness” of the results (Munnel, 1992, Pereira, 2000 and Sturm et al., 1998). To overcome these empirical problems, very recent studies used new time series techniques, such as multivariate cointegration and impulse response analyses (e.g., Ghali, 1998; Pereira, 2000; and Mittnik and Neumann, 2001). These studies have used variables such as private investment, public investment and output to analyze the effects of public capital spending on private capital spending and output; however, the issue of macroeconomic instability has not been analyzed yet. In this study our aim is to extend the recent literature by considering a developing country like Turkey, which we believe is a good case study since she has suffered (and is still suffering) from chronic macroeconomic instability over the last twenty five years. To accomplish this we estimate the long-run relationship between public investment, private investment, macroeconomic instability and output in Turkey for the period 1963-1999 by using multivariate cointegration analysis. Furthermore, we also provide the generalized impulse

wealth inequality (See, for example, Dornbusch and Edwards (1990) and Onis (1997)), and/or vulnerability to external shocks.

Recently, some researchers pointed out the importance of time series techniques in growth studies, mainly due to the methodological problems with cross-section studies. See, for example, Temple (1999) and Ericsson et al. (2001) and the references cited there.

There are also single-equation time series studies, e.g., Nazmi and Ramirez (1997) and Ramirez (1998) but these studies do not address most of the empirical problems cited in the text.
response functions to examine the dynamic effects of a shock on a given variable on all the other variables in the system. Moreover, the empirical analysis is extended by considering the infrastructure component of the public investment.

This paper is organized as follows. Section 2 provides a condensed overview of the Turkish economy over the sample period (1963-99). Empirical results appear in Section 3 and finally Section 4 gives the conclusion and the policy implications of the findings.

2. AN OVERVIEW OF THE TURKISH ECONOMY, 1963-99

In this section, we will provide a condensed overview of the Turkish economy for the 1963-99 period. In line with the aim of this paper, we will mainly focus on capital formation, growth and macroeconomic instability.

Table 1 provides summary information on the Turkish economy for the overall (1963-99) and two sub-periods, namely, inward-oriented period (1963-1979) and outward-oriented period (1980-1999). During 1963-1979 period, Turkey followed a state-led inward-oriented growth strategy by following import substitution policies and economy-wide planning by the State Planning Organization (SPO). Besides the trade restrictions and financial repression policies (e.g. regulated interest rates), the state made use of a heavy public investment, especially in the manufacturing sector, to promote industrialization and economic development. During the inward-oriented period, Turkey enjoyed a quite high rate of growth (real GNP grew at annual average rate of 5.1%) and a rapid rate of capital accumulation. While real private investment increased at an average annual rate of 7%, public investment increased at an average annual rate of 9.7% from 1963 to 1979.

7See, for example, Aricanli and Rodrik, 1990; Boratav et al, 1996; Celasun, 1994; Celasun and Rodrik, 1989; Ekinci, 1990, 2000; Metin-Ozcan et al., 2001; Metin, 1998; Ozatay, 1997, 2000; and Senses, 1990, 1991 and references therein for more detailed analysis on related and other issues.

8It would be more appropriate to analyze inward-oriented period by considering two sub-periods, namely, economic crisis period (1978-79) and pre-crisis period (1963-77). The economic growth rate is more impressive when we look at the pre-crisis period (1963-1977) (real GNP grew at an annual average rate of 5.8%). Investment performance was also better for the pre-crisis period (1963-77), real private (public) investment grew, on average, by 9.3% (12.2%) per year.
Table 1. Selected Indicators of the Turkish Economy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Output and Capital Formation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.A Annual Average Growth Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real GNP (Y)</td>
<td>4.4</td>
<td>5.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Real Private Fixed Investment (IP)</td>
<td>5.8</td>
<td>7.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Real Public Fixed Investment (IG)</td>
<td>5.0</td>
<td>9.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Real Public Fixed Core Infrastructure Investment (IGI)</td>
<td>5.9</td>
<td>10.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Real Public Fixed Non-Core Infrastructure Investment</td>
<td>4.3</td>
<td>26.5</td>
<td>0.8</td>
</tr>
<tr>
<td>I.B Composition of Public Investment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Infrastructural Investment (as % of total)</td>
<td>44.4</td>
<td>37.3</td>
<td>50.5</td>
</tr>
<tr>
<td>Non-Core Infrastructure Investment (as % of total)</td>
<td>55.6</td>
<td>62.7</td>
<td>49.5</td>
</tr>
<tr>
<td>II. Macroeconomic Instability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomic Instability Index (MII)</td>
<td>0.326</td>
<td>0.104</td>
<td>0.514</td>
</tr>
<tr>
<td>Inflation Rate (INF),** %</td>
<td>41.7</td>
<td>18.1</td>
<td>61.8</td>
</tr>
</tbody>
</table>

* Simple period average.
** INF=Percentage change in GNP Deflator.

Source: See the data appendix

During the 1960s the macroeconomic environment was quite stable. However, mainly due to foreign exchange difficulties of the late 1960s, in 1970 Turkey introduced an IMF-based stabilization package, which involved a maxi devaluation. From 1973 to 1977, Turkey experienced an unprecedented growth in investment, led by public sector investment, mainly in manufacturing and transportation. Both public and private investment grew at an unprecedented rate, 20.4% and 8.4%, respectively, during this period. However, macroeconomic instability significantly increased during mid-70s mainly due to the deterioration of the fiscal balances and the excessive reliance on foreign borrowing. By late 1970s Turkey reached a state where it could no longer service even the short-term debts and hence entered severe economic crisis.

9It should be noted that investment series have been revised several times in Turkey during last two decades (See, for example, Conway (1990)). We reported our results in this section and elsewhere based upon the most recent series of the SPO (See data appendix for more detail)
10During 1960s average inflation rate (INF) was 5.2%, and it was lowest compared to the 1970s (27%), 1980s (50.4%) and 1990s (73.2%). Furthermore, macroeconomic instability index (MII) was 0.04 points and it was the lowest decade average compared to other decades.
In 1980, Turkey took a crucial decision to switch its overall economic strategy from inward-oriented growth strategy to outward-oriented growth strategy. The 1980 program had both stabilization and structural aspects (e.g. trade and financial liberalization), and was strongly backed by IMF, World Bank and OECD consortium. The role of state had crucially changed with this program; for example, in line with the new strategy, the state changed its investment strategy from manufacturing to infrastructure.

During outward-oriented period, real GNP of the Turkish economy grew at an average annual rate of 4.2%. Compared to the inward-oriented period, this performance doesn’t seem impressive. However, in the outward-oriented period, economic growth rate was much better during 1980s (5.2% per year) compared to 1990s (3.2% per year). Relatively speaking, the performance of capital formation in private sector was better compared to that of public sector during this period. Real private (public) investment grew at an average annual rate of 6.1% (1.6%), from 1980 to 1999. As we mentioned before, the crucial change in this period is the changing role of the state in the investment process. The share of core public infrastructure (transport + communication + energy) investment in total public investment rose from 37.3% in the inward-oriented period to 50.5% in the outward-oriented period. Nevertheless, while private investment-GNP ratio (in current prices) rose from 12.8% in 1980s to 18.1% in 1990s, public investment-GNP ratio dropped from 8.8% in 1980s to 6.2% in 1990s. The main reason behind this fall is the rising macroeconomic instability after late 1980s, which has seriously lowered the fiscal “ability” of governments for making necessary investments (especially, infrastructure investments).

Generally speaking, macroeconomic instability has steadily increased since mid-1970s and since then has become a chronic problem for the Turkish economy. During early 1980s Turkey was successful in lowering the macroeconomic instability inherited from the

1See, for example, Aricanli and Rodrik (1990), Boratav et al. (1996), Celasun (1994), and Senses (1991).
3Furthermore, real GNP fluctuated less during inward-oriented period compared to outward-oriented period.
4Moreover, volatility (variability) of real GNP has increased during 1990s.
5Note that as with real GNP, volatility of both public and private investment has increased during 1990s.
6In line with this argument, Conway (1990:82) stated that “[r]eal public investment growth appears to have [negatively] responded to budgetary pressures.”
7Average annual inflation rate (INF) rose from 5.2% in 1960s to 27% in 1970s, 50.4% in 1980s and 73.2% in 1990s. Similarly macroeconomic instability index (MII) rose from 0.04 points in 1960s, to 0.149 points in 1970s, 0.436 points in 1980s and 0.591 points in 1990s.
economic crisis of late 1970s, inflation rate and MII fell from 89.6% and 0.520 points in 1980 to 26% and 0.317 points in 1983, respectively. Similarly, macroeconomic management was quite good during mid-1980s. However, starting from late 1980s macroeconomic instability has risen, mainly due to political factors and related populist and myopic policies, and associated problems of public sector imbalances. Before late 1993, Turkey had managed to maintain the populist policies mainly with the help of capital inflows. However, the cost of this strategy was very high, real interest rate on domestic debt had increased steadily during early 1990s and this deteriorated the fiscal balances, for instance, domestic interest payments out of consolidated budget (as % of GNP) almost doubled from 1990 to 1993.

Turkey experienced a very severe financial crisis in early 1994 mainly due to unsustainable fiscal balances, the collapse of the domestic debt market, monetization and the expectations of further monetization. Real GNP contracted by 6.1% from 1993 to 1994, which is the peak rate of contraction of the Turkish economy over the 1963-1999 period. Similarly, real public investment fell dramatically by about 40% from 1993 to 1994. Real private investment, however, contracted only moderately (about 5%). Both inflation and MII had peaked in 1994, inflation rate was 107.3% and MII was 0.842 points in 1994. Furthermore, Turkish Lira depreciated by more than 150% against US$ in 1994. In mid-1994, Turkey adopted an IMF-based stand-by agreement, and managed to cool-down the severe economic crisis, inflation rate and MII fell from 107.3% and 0.842 points in 1994 to 87.2% and 0.563 points in 1995, respectively. However, macroeconomic instability has continued until late 1990s, mainly due to reluctance of governments (e.g. to avoid negative political consequences) to take necessary painful measures; in other words, governments delayed stabilization. During this period, public sector balances were unsustainable due to reliance on the domestic borrowing (e.g. real interest rate on domestic debt almost doubled from 1994 to 1999). In December 1999, Turkey signed a three-year IMF-based stand-by agreement, which mainly aimed to solve the public sector imbalances. Unfortunately, this program had

20See, for example, Ozatay (1999), Akyurek (1999) and Onis (1997) for more detail and empirical evidence.
21Turkish Lira became fully convertible and capital account was fully-liberalized in 1989.
22See Ekinci (2000) for more detail.
24This is a solid evidence of the negative effect of macroeconomic instability on fiscal “ability” of governments for making investment.
25See, for example, Veiga (2000) for well documented reasons for delayed stabilizations.
26See Ekinci (2000) and the references therein for a thorough overview of these problems and extensive assessment of the aspects of this program.
failed in early 2001 due to a major economic crisis and Turkey signed another program backed by IMF and World Bank, which is still being implemented in Turkey.

3. EMPIRICAL RESULTS

3.1. The Data and Unit Root Tests

The data used in this study are Turkish annual data from 1963 to 1999. The sample period is determined by the availability of official investment data. Figures 1-3 show the time plots of (LNY), (LNIP, LNIG, LNIGI) and (LMII) respectively, where LNY is the (natural) logarithm of real GNP, LNIP is the logarithm of real private fixed investment, LNIG is the logarithm of real public fixed investment, LNIGI is the logarithm of real public fixed core infrastructure investment and LMII is the logarithm of macroeconomic instability index (MII). Data appendix provides the detail on the definitions and the sources of the data.

A visual inspection of the data suggests that all these series are I(1) (i.e. integrated of order one) or they have a unit root(s). However, we also provide the formal unit root test results in Table 2. As expected, for all variables investigated none of them rejects the null hypothesis of I(1) at 95% critical level (See, the ADF test results in the second and third columns of Table 2). Furthermore, the null hypothesis of I(2) or existence of two unit roots rejected at 95% critical level for all variables (See, the ADF Test results on first differences in the fourth

Figure 1. Time Plot of LNY

![Figure 1. Time Plot of LNY](image)

Figure 2. Time Plot of LNIP, LNIG and LNIGI

![Figure 2. Time Plot of LNIP, LNIG and LNIGI](image)
Therefore, all these evidence suggest that the variables under consideration can be considered as I(1). However, it is well-documented that if we neglect level and/or trend shift (e.g. due to structural break) in unit root tests, such as the ADF test, we could possibly give “spurious” unit root result (See, for example, Perron, 1989; and Franses, 1998; and the references therein). Therefore, since we know the break date quite well from the evidence reported in Section 2, which is 1980, we also performed a Perron test, which allows for a change in the level and trend. All variables except LNIG cannot reject the null hypothesis of a unit root at 95% critical level (See, the Perron Test results on first

Furthermore, the time plots of the first differences of all the variables (not reported in the paper but they can be requested from the first author) support these results.
differences in the last column of Table 2). However, LNIG cannot reject the null at 99% critical level.

In sum, all these results lend support to the maintained assumption that all these variables are I(1), which is a pre-condition for a cointegration analysis.

Table 2. Unit Root Tests

<table>
<thead>
<tr>
<th>Variables</th>
<th>ADF Test</th>
<th>Perron Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level</td>
<td>First Difference</td>
</tr>
<tr>
<td></td>
<td>Without Trend(^a)</td>
<td>With Trend(^b)</td>
</tr>
<tr>
<td>LNY</td>
<td>-1.0696 (0)(^c)</td>
<td>-2.4769 (0)</td>
</tr>
<tr>
<td>LNIP</td>
<td>-1.2921 (1)</td>
<td>-3.0168 (3)</td>
</tr>
<tr>
<td>LNIG</td>
<td>-2.2886 (3)</td>
<td>-2.4310 (1)</td>
</tr>
<tr>
<td>LNIGI</td>
<td>-1.9448 (0)</td>
<td>-1.8378 (0)</td>
</tr>
<tr>
<td>LNMII</td>
<td>-1.2578 (1)</td>
<td>----- (^e)</td>
</tr>
</tbody>
</table>

\(^a\)ADF regressions include an intercept but not a linear trend (See, Pesaran and Pesaran, 1997:53).

\(^b\)ADF regressions include both an intercept and a linear trend (See, Pesaran and Pesaran, 1997:53).

\(^c\)Numbers in parentheses are the order of augmentations (p*) chosen by the Akaike Information Criterion (AIC). Note that unit root test results also hold when p*(s) are chosen by Schwarz Bayesian Criterion (SBC). Due to a size-power trade-off in the determination of the order of augmentation (p) of ADF tests, we choose to select p* by AIC, which is a common practice in the applied works (see, Pesaran and Pesaran, 1997:213). Therefore, in line with Pesaran and Pesaran (1997:213), first we estimated ADF regressions for p=0 to p=4 and selected the order of augmentation (p*) based on AIC. Then, we performed the ADF tests (see the text). Note that the same sample period (1969-1999) is used in calculations.

\(^d\)An asterisk (*) represents the rejection of the unit root null hypothesis at 95% critical level (MacKinnon, 1991:Table 1)

\(^e\)Since MII is bounded between 0 and 1 due to its construction (see the data appendix), we did not include trend for LNMII (see, for example, Ahmet and Rogers (2000)). Furthermore, linear trend in LNMII is not meaningful from the economic point of view.

\(^f\)This model is within innovation outlier (IO) framework and allows for both a change in the level and trend (See, Franses (1998:150-1) for this test).

\(^h\)LNIG rejects the null hypothesis at 95% critical level but not at 99% level (see Franses (1998, Table 6.6) for critical values). Numbers in parentheses are the order of augmentations (p*) chosen by the Akaike Information Criterion (AIC). Note that test results also hold when p*(s) are chosen by Schwarz Bayesian Criterion (SBC) or if we just use the same p*(s) of the third column. We use the same procedure as in note (c) for determining the order of augmentation (p*). Note that the same sample period (1969-1999) is used in calculations.

3.2. System Cointegration Analysis

This sub-section provides the system cointegration results. We provide results for total public investment and its infrastructure components. In line with this, we form two cointegration systems: System #1 [LNIP, LNY, LNIG, LNMII] and System #2 [LNIP, LNY, LNIGI, LNMII].

We use Johansen multivariate technique in our cointegration analyses (see Johansen, 1988 and Johansen, 1995). Following Doornik et al. (1998), Hendry and Juselius (2001) and Pesaran and Smith (1998), first we performed a cointegration analysis with constant term entering unrestrictedly but the trend term is restricted to lie in the cointegration space.
However, trend term was found to be insignificant in the cointegration relation(s), hence, following Hendry and Juselius (2001) we performed a cointegration analysis with constant term entering unrestrictively but with no linear trends.

Following Juselius (2001) and Juselius and MacDonald (2000), we also include a step (intervention) dummy (DS80) in each cointegration system to account for the structural break of 1980. DS80 entered restrictively to the cointegration space. However, this step dummy is found to be insignificant in the cointegration relation. This might be due to the reason that 1980 structural break could have affected several variables similarly and hence causing the intervention effects to cancel out (see, Hendry and Juselius, 2001). Therefore, we did not include DS80 in our cointegration analysis.

Below, we present the cointegration analysis for the System #1 and System #2.

SYSTEM #1 [LNIP, LNY, LNIG, LNMII]

First we form system with the variables [LNIP, LNY, LNIG, LNMII] and test for cointegration. Table 3 provides the cointegration result for System #1 with the lag length of the VAR = 1. We also included an impulse dummy for 1994 (D94) unrestrictively in our cointegration analysis. The trace and max statistics suggest one cointegration relation. When we investigate Table 3, this cointegration relation seems to be the following simple long-run private investment relation:

28Underlying trends of the variables under consideration possibly cancelled out in the cointegration relation (see Hendry and Juselius (2001)).

29Similarly, we also include a step dummy (DS89) in each cointegration system to account for the effect of the full-financial liberalization in 1989. This step dummy is also found to be insignificant in the cointegration relation.

30As can be seen from Figures 1-3, there is some visual evidence on this.

31Note that the lag length of the VAR for each system is determined by Schwarz Bayesian Criterion (SBC).

32When we examine the regression results for each equation in VAR(1) model, LNIG equation has non-normal residuals. This is clearly evident in the residual plot of that equation in which 1994 is an outlying observation. (Note that this is consistent with the evidence in Section 2). Therefore, following Hendry and Juselius (2001), we include impulse dummy for 1994 (D94) in our cointegration analysis for System #1. After including D94 in VAR(1) unrestrictively, all equations have normal distributions and none of them show autocorrelation and heteroskedasticity (see Pesaran and Pesaran, 1997 for the details of these tests). Due to the same considerations we also include impulse dummy for 1994 (D94) in our cointegration analysis for System #2.

33It should be noted here that the trace and max statistics for System #1 without the impulse dummy (D94) also suggests one cointegration relation. Therefore, our results are not an artefact of dummy (D94).

34Note that we call this investment relation as simple investment relation since other determinants of investment, e.g. real interest rate, are absent in equation (1) (and the System #1) due to the purpose of
This equation suggests that private investment is positively affected by output, negatively affected by macroeconomic instability and public investment for the period under study. These results are consistent with theory and the descriptive analysis of the Turkish economy provided in Section 2.

<table>
<thead>
<tr>
<th>Table 3. Cointegration Analysis of System #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalues</td>
</tr>
<tr>
<td>Null Hypotheses</td>
</tr>
<tr>
<td>Max Statistic</td>
</tr>
<tr>
<td>95% Critical Value</td>
</tr>
<tr>
<td>Trace Statistic</td>
</tr>
<tr>
<td>95% Critical Value</td>
</tr>
<tr>
<td>Cointegration Results (r=1)</td>
</tr>
<tr>
<td>(β)⁵</td>
</tr>
<tr>
<td>(α)⁶</td>
</tr>
<tr>
<td>Hypotheses Tests</td>
</tr>
<tr>
<td>Test of significance of LNY</td>
</tr>
<tr>
<td>Test of significance of LNMII</td>
</tr>
<tr>
<td>Test of significance of LNIG</td>
</tr>
</tbody>
</table>

⁵Critical values are from Osterwald-Lenum (1992, Table 1)
⁶Standardized eigenvector.
⁷Asymptotic standard errors are in parentheses.
⁸Adjustment coefficients.
⁹Test of long-run exclusion (See, Hendry and Juselius, 2001).
As it can be seen from standard errors of the cointegration vector in Table 3, all variables except LNIG are statistically significant. We also formally tested the significance of the variables by exclusion test. The results of these tests are confirmatory (Table 3). That is, LNY and LNMII have significant coefficients, but LNIG has insignificant coefficient. However, if we consider the cointegration result for System #1 without D94, we will have the following simple long-run private investment relation:

\[\text{LNIP} = 3.44 \text{LNY} - 5 \text{LNMII} - 0.38 \text{LNIG} \] \hspace{1cm} (2)

Both equations ((1) and (2)) are quite similar but when we examine standard errors (not reported) all variables seem to be significant. The result of significance (exclusion) test provides a p-value of 0.059 for LNIG (LNY and LNMII both have p-value=0); therefore, there is some (but marginal) evidence of long-run crowding-out effect.

SYSTEM #2 [LNIP, LNY, LNIGI, LNMII]

We now would like to examine the effect of infrastructure component of the public investment. Therefore, only difference of System #2 compared with the System #1 is that we have replaced LNIG with LNIGI. Table 4 provides the cointegration results for the System #2 with lag length of VAR = 1. The evidence favors one cointegration relation and it is also interpreted as private investment relation (See Table 4). The crucially different result in this system is that even though LNIGI has negative effect (crowding-out) on LNIP, its coefficient is not significant as indicated by the long-run exclusion test in Table 4. Furthermore, this is also the case without D94. After imposing the long-run exclusion restriction (and the normalization restriction), the investment relation becomes:

\[\text{LNIP} = 3.15 \text{LNY} - 5.20 \text{LNMII} \] \hspace{1cm} (4)

This simple investment equation suggests that private investment is positively affected by output and negatively affected by macroeconomic instability. Again, these results are

35 At 5.9% significance level.
36 Due to the similar considerations D94 enters unrestrictedly to cointegration analysis.
37 Note that, in System #2 without D94, the private investment relation becomes: LNIP = 3.21 LNY – 0.23 LNIGI – 4.45 LNMII. Furthermore, all variables are significant except LNIGI (p-value = 0.11).
consistent with theory and the descriptive analysis of the Turkish economy provided in Section 2.

<table>
<thead>
<tr>
<th>Table 4. Cointegration Analysis of System #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalues</td>
</tr>
<tr>
<td>0.638</td>
</tr>
<tr>
<td>0.17509</td>
</tr>
<tr>
<td>0.10778</td>
</tr>
<tr>
<td>0.042736</td>
</tr>
<tr>
<td>Null Hypotheses</td>
</tr>
<tr>
<td>r = 0</td>
</tr>
<tr>
<td>r ≤ 1</td>
</tr>
<tr>
<td>r ≤ 2</td>
</tr>
<tr>
<td>r ≤ 3</td>
</tr>
<tr>
<td>Max Statistic</td>
</tr>
<tr>
<td>36.68</td>
</tr>
<tr>
<td>6.93</td>
</tr>
<tr>
<td>4.11</td>
</tr>
<tr>
<td>1.57</td>
</tr>
<tr>
<td>95% Critical Valuea</td>
</tr>
<tr>
<td>27.07</td>
</tr>
<tr>
<td>20.97</td>
</tr>
<tr>
<td>14.07</td>
</tr>
<tr>
<td>3.76</td>
</tr>
<tr>
<td>Trace Statistic</td>
</tr>
<tr>
<td>49.19</td>
</tr>
<tr>
<td>12.61</td>
</tr>
<tr>
<td>5.68</td>
</tr>
<tr>
<td>1.57</td>
</tr>
<tr>
<td>95% Critical Valuea</td>
</tr>
<tr>
<td>47.21</td>
</tr>
<tr>
<td>29.68</td>
</tr>
<tr>
<td>15.41</td>
</tr>
<tr>
<td>3.76</td>
</tr>
</tbody>
</table>

Cointegration Results (r=1)

<table>
<thead>
<tr>
<th>LNIP</th>
<th>LNY</th>
<th>LNMII</th>
<th>LNIGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(β')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.1551</td>
<td>4.3892</td>
<td>0.20909</td>
</tr>
<tr>
<td>(0.39148)c</td>
<td>(1.0593)</td>
<td>(0.12639)</td>
<td></td>
</tr>
<tr>
<td>(α')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.0905</td>
<td>0.0185</td>
<td>-0.1499</td>
<td>-0.1393</td>
</tr>
</tbody>
</table>

Hypotheses Tests

Test of significance of LNY	17.7	1	0.00
Test of significance of LNMII	29.5	1	0.00
Test of significance of LNIGI	2	1	0.16

Restricted Cointegration Analysis

<table>
<thead>
<tr>
<th>LNIP</th>
<th>LNY</th>
<th>LNMII</th>
</tr>
</thead>
<tbody>
<tr>
<td>(β')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.1539</td>
<td>5.2016</td>
</tr>
<tr>
<td>(0.50615)c</td>
<td>(1.4605)</td>
<td></td>
</tr>
<tr>
<td>(α')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.0548</td>
<td>0.0198</td>
<td>-0.1290</td>
</tr>
</tbody>
</table>

*Critical values are from Osterwald-Lenum (1992, Table 1)

*bStandardized eigenvector.

*cAsymptotic standard errors are in parentheses.

*dAdjustment coefficients.

*eTest of long-run exclusion (See, Hendry and Juselius, 2001).

Finally, we would like to note that our main results in this section also hold when we use inflation rate as a proxy for macoecoconomic instability. This is provided in Ismihan (2002). In the next section, in order to get more insights, we examine the dynamic effects of a shock on a given variable on all the other variables in the system, by using impulse response

[^38]: According to Fischer (1993b:487), inflation rate is the best single indicator of policy-induced macroeconomic instability and “serve as an overall ability of government to manage the economy”.

15
analysis. (See, for instance, Lutkepohl and Reimers (1992) and Pesaran and Pesaran (1997) for the importance of impulse response analysis in cointegrated systems).

3.3. Impulse Response Analysis

In this section, we provide the generalized impulse response (IR) functions39 to examine the dynamic effects, that is, short and medium-run effects of a shock on a given variable on all the other variables in the system. Below, we present this analysis for the System #1 only since the impulse response analysis of System #2 is quite similar to that of System #1.40

Firstly, in order to assess the dynamic effects of macroeconomic instability on other variables in the system, we examine the generalized IRs to a positive unit [one standard error (S.E.)] shock in macroeconomic instability (LNMII) equation provided in panel (a) Figure 4. As expected, short and medium-run responses are negative. That is, private investment, public investment and output are negatively and permanently affected by a positive shock in macroeconomic instability. However, private investment was dramatically affected compared to output, which is the least affected one. Furthermore, public investment is also seriously affected from macroeconomic instability shock. This might be due to a negative effect of macroeconomic instability shock on the fiscal “ability” of governments. That is, an increase in macroeconomic instability could negatively affect public investment by reducing the fiscal “ability” of government(s) and hence increasing the level of fiscal stringency. Therefore, governments tend to cut public investment rather than current or populist spending in the case of fiscal stringency, as suggested by the recent new political economy literature. All these results are consistent with our analysis in Section 2. Finally, as can be seen from panel (a) of Figure 4, impact effects of macroeconomic instability shock on both private and public effects are smaller compared to the medium-term effects; that is, the effect of a macroeconomic instability shock has an accelerating negative effect on investment, especially, on private investment.

39We prefer to use generalized IR functions since, unlike to the orthogonalized IR functions, generalized IR functions do not depend on the ordering of the variables within the system (Pesaran and Shin, 1998).

40There is only one considerable difference. In the System #2, public infrastructure investment is more seriously affected from macroeconomic instability (shock) compared to total public investment in System #1. This is consistent with the observation that Turkey failed to make necessary infrastructure investment due to fiscal problems and restraints during late 1990s, and hence experienced infrastructure bottlenecks, such as energy bottlenecks, during late 1990s and early 2000s. The results of generalized IR analysis for the System #2 can be requested from the first author.
Secondly, we examine the dynamic effects of public investment shock on other variables in the cointegration system. As can be seen from the panel (b) of Figure 4, responses of private investment and output are positive; however, the response of the former is much higher. These results suggest a complementarity between public and private investment in short and medium-run. Note that, public and private investment moved (“wandered”) together,

Figure 4. Generalized IR(s) to one S.E. shock in the equation for LNMII, LNIG, LNY

(a) Generalized IR(s) to one S.E. shock in the equation for LNMII

(b) Generalized IR(s) to one S.E. shock in the equation for LNIG
implying complementarity, until late 1970s (see Figure 2) but after late 1970s this relationship started to shatter possibly due to a negative effect of chronic macroeconomic instability on both private and public investment but via different channels. Furthermore, this relationship seems to be reversed after late 1980s, possibly due to rising macroeconomic instability and associated deterioration in fiscal balances, which has affected both public and private investment. Therefore, in the case of Turkey, chronic and increasing macroeconomic instability and associated fiscal problems seems to shatter or even reverse the complementarity between public and private investment in the long-run. This observation is in line with the recent work by Metin-Ozcan et al. (2001).

Furthermore, response of macroeconomic instability to public investment shock is initially negative but over the medium-term it diminishes towards zero. This result suggest that rise in public investment does not contribute to macroeconomic instability over the short and medium term. This result seems to be counterintuitive. However, one potential explanation for this seemingly counterintuitive result is that an increase in public investment in case of chronic macroeconomic instability and associated fiscal stringency signals a decisive change in fiscal policy, e.g. from populist to productive spending, and could have immediate political credibility and expectation effects which will lower expected inflation, inflation risk on

41By creating uncertainty about current and future macroeconomic environment, the chronic and increasing macroeconomic instability could affect investment and production decisions of the private firms (e.g. Fischer, 1993a and 1993b). Furthermore, rising fiscal deficits could possibly crowd-out financial resources available for new private investment. For example, Celasun (1994) pointed out these possibilities, among others, in his analysis on the unsatisfactory investment performance of Turkish manufacturing sector. As we mentioned above, the chronic and increasing macroeconomic instability could also negatively affect public investment by reducing the fiscal “ability” of government(s) and hence increasing the level of fiscal stringency.
borrowing, and hence macroeconomic instability (See, for example, Alesina et al. (1998) and Perotti (1999) and the references therein for similar arguments). Furthermore, the rise in public investment increases expenditures of government but the rise in public investment also increases national income and output due to its dual role; that is, public (and also private) investment affects both demand and supply-side of the economy. The rise in national income will, in turn, increase the revenues of government, e.g. tax and seigniorage revenue, and help to reduce fiscal deficit and, therefore, inflation over some period, but with diminishing effects.

Thirdly, we would like to examine the dynamic effects of a positive unit shock to output on all the other variables. As panel (c) of Figure 4 reveals, short and medium-run responses of private investment to a rise in output is positive as expected. Similarly, the response of public investment is also positive. Furthermore, as can be seen from panel (c) of Figure 4, impact effects of output shock on both private and public investment are only slightly different than medium-term effects. Moreover, short-run responses of macroeconomic instability is negative (e.g. due to the positive effect on revenues of government and, therefore, inflation); however over the medium term this response approaches towards zero.

In the next section, we provide conclusion and the policy implications.

4. CONCLUSION AND POLICY IMPLICATIONS

This study has investigated the empirical relationships between macroeconomic instability, capital accumulation and growth in Turkey over the period 1963-1999.

The main conclusion from our study is that the chronic macroeconomic instability of the Turkish economy has seriously affected capital formation and growth of the Turkish economy. Even though we found some evidence of crowding-out effect of total public investment on private investment, there was no significant effect of public infrastructure investment on private investment in the long-run. However, we found some evidence of complementarity between private and public investment over the short and medium-run. Our

42Conway (1990) pointed to the negative effects of price-based structural adjustment policies on private investment in Turkey.
43According to Perotti (1999:1400), “… in times of fiscal stress the economy’s response to fiscal shocks changes qualitatively.”
44The dynamic effects of private investment shock are similar to public investment shock on all the other variables (simply replace LNIP with LNIG in panel (b) of Figure 4); therefore, it is not separately explained.
results suggest that the chronic macroeconomic instability seems to become a serious impediment to the public investment, and has shattered, or even reversed, the long-run complementarity. This result may also shed some light on the ambiguity concerning the empirical evidence on complementarity (crowding-in) effect for the Turkish economy.

The policy implications are straightforward when we consider these results. Generally speaking, over the last twenty five years, governments in Turkey either delayed or did not continue stabilization programs. The barriers to stabilization, such as political instability and polarization, are well-documented in Veiga (2000) and Drazen (2000) among others. Nevertheless, as this study shows, macroeconomic instability has an adverse impact on capital accumulation and economic growth in Turkey. Therefore, the government should continue the current stabilization program to restore macroeconomic stability, as soon as possible. This is the first policy implication.

The second policy implication is that policy makers have to be careful in their decisions concerning the components of public spending that would bear the burden of fiscal adjustment. If government reduces public capital spending (especially, infrastructure spending) instead of current and populist spending; then, this would harm capital accumulation, economic growth and development. Furthermore, as opposed to the conventional view that fiscal adjustments are recessionary, there is growing evidence that some types of fiscal adjustments may be expansionary (e.g. Perotti, 1996, 1999; and Alesina et al., 1998). In other words, this new line of research argues that composition of adjustment matters. For example, fiscal adjustments based on current spending may be expansionary under certain conditions, e.g. initial conditions like very high level of debt to GNP ratio (See, Perotti, 1999).

In sum, Turkish experience has shown that macroeconomic instability not only deteriorates economic growth but it may also reverse the complementarity between public and private investment in the long-run. In order to shed further light on this result, this study can be further extended for other developing countries suffering from chronic instability like Turkey and this is left for further research.

\[\text{See, for example, World Bank (1994) and the references therein, for the crucial importance and the multi-dimensional roles of infrastructure in economic development.}\]
DATA APPENDIX

LNY is the (natural) logarithm of real GNP in 1994 prices (billion TL).
Source: SPO (1997) and SPO (2001).

$LNIP$ is the (natural) logarithm of real private fixed investments in 1994 prices (billion TL). Nominal private fixed investment series were deflated by private fixed investment deflator series.
Source: SPO (1997) and SPO (2001). Note: deflators were provided by the SPO.

$LNIG$ is the (natural) logarithm of real public fixed investments in 1994 prices (billion TL). Nominal public fixed investment series were deflated by public fixed investment deflator series.
Source: SPO (1997) and SPO (2001). Note: deflators were provided by the SPO.

$LNIGI$ is the (natural) logarithm of real public fixed core infrastructure investments in 1994 prices (billion TL). Nominal sectoral public fixed investment series were deflated by relevant sectoral public fixed investment deflator series. In line with Ekinci (1990) and Boratav *et al.* (1996) we define core infrastructure investment as the total of the public energy, transportation and communication sectors’ fixed investments. See World Bank (1994:2) for broad definition of infrastructure.
Source: SPO (1997) and SPO (2001). Note: Sectoral deflators were provided by the SPO.

$LNMII$ is the (natural) logarithm of the macroeconomic instability index (MII), i.e., $LNMII = \ln (1+MII)$. This index is calculated by using human development index (HDI) methodology and it is based on macroeconomic instability indicators, such as inflation rate, deficit to GNP ratio, external debt to GNP ratio and change in exchange rate, identified by previous researchers (e.g. Fischer, 1993a,1993b; and Bleaney, 1996). It is a simple average of the four sub-indices obtained from these four variables. We use this index (MII) as a proxy for macroeconomic instability.
Source: Ismihan (2002).
REFERENCES

